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Abstract
Off-diagonal long-range order (ODLRO) which is believed to be one
characteristic of superconductivity is a quantum phenomenon not describable
in classical mechanical terms. The quantum state constructed by η-pairing
demonstrates ODLRO. Entanglement is a key concept of the quantum
information processing and has no classical counterpart. We study the
entanglement property of the η-pairing quantum state by concurrence and
entropy which are two measures of the entanglement. We show that the
concurrence of entanglement between one-site and the rest sites is exactly the
correlation function of the ODLRO for the η-pairing state in the thermodynamic
limit. So, when the η-pairing state is entangled, it demonstrates ODLRO and is
thus in the superconducting phase, if it is a separable state, there is no ODLRO.
In the thermodynamical limit, the entanglement between the M-site and other
sites of the η-pairing state does not vanish. Other types of ODLRO of the
η-pairing state are presented. We show that the behaviour of the ODLRO
correlation functions is equivalent to that of the entanglement of the η-pairing
state. The scaling of the entropy of the entanglement for the η-pairing state is
studied.

PACS numbers: 75.10.Pq, 03.67.Mn, 03.65.Ud, 03.67.−a

1. Introduction

Quantum entanglement plays a central role in quantum information and quantum computation
[1–9]. On the other hand, quantum entanglement may also be regarded as an important
parameter in quantum phase transitions [10, 11]. It is also pointed out that entanglement of
the ground state of XXZ and XY spin chains at a critical point is closely related with the
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conformal field theories [12]. Some related works were also performed for various models
[13–17]. Recent experiments have shown that entanglement can contribute significantly to the
bulk susceptibility [18].

Off-diagonal long-range order (ODLRO) is an important concept in condensed matter
physics [19, 20]. It is proved that ODLRO implies both the Meissner effect and the quantization
of magnetic flux, which are the basic characteristic properties of superconducting states
[19, 21]. It is argued that since off-diagonal elements have no classical analogue, the off-
diagonal long-range order is a quantum phenomenon not describable in classical mechanical
terms [19]. From quantum information theory, it is presently obvious that quantum
entanglement is quantum mechanical and has no classical counterpart. And also the entangled
state may be shared by spatially separated parties and thus can have long-range correlation.
Consequently, superconductors may also be characterized by the existence of quantum
entanglement, and the property of quantum entanglement could be the hidden reason that
ODLRO can characterize the superconductivity. We may also argue that entanglement may
be one basic quantity which could closely relate with different physical phenomena. So, it is
necessary to explore the property of entanglement for various quantum systems.

2. η-pairing state with ODLRO

The entanglement of ground states for various one-dimensional spin models is well studied.
The case of a higher-dimensional system, for example the Hubbard model, is comparatively
complicated. However, in three dimensions (also in one and two dimensions), it is well known
that the Hubbard model has an eigenstate with η-pairing [20]. It is argued that this state is
metastable. We know that this eigenstate with η-pairing possesses ODLRO. And since this
state is symmetric and relatively simple, its entanglement can be analysed explicitly. In this
paper, we will study the entanglement of the η-pairing quantum state.

The Hamiltonian of the Hubbard model is as follows:

H = −
∑

σ,〈j,k〉

(
c
†
j,σ ck,σ + c

†
k,σ cj,σ

)
+ U

L∑
j=1

(
nj↑ − 1

2

) (
nj,↓ − 1

2

)
,

where σ = ↑,↓, and j, k are nearest-neighbouring sites, nj,σ = c
†
j,σ cj,σ are number operators.

c
†
j,σ are standard fermion operators with anticommutation relations given by

{
c
†
j,σ , ck,σ ′

} =
δj,kδσ,σ ′ . We assume the lattice under consideration is three dimensional, and the total
number of lattice sites is L. The η-pairing operators at lattice site j are defined as
ηj = cj,↑cj,↓, η

†
j = c

†
j,↓c

†
j,↑, ηz

j = − 1
2nj + 1

2 . These operators form a SU(2) algebra as

shown by the relations
[
ηj , η

†
j

] = 2ηz
j ,

[
η
†
j , η

z
j

] = η
†
j ,

[
ηj , η

z
j

] = −ηj . The η operators are

defined as η = ∑L
j=1 ηj , η

† = ∑L
j=1 η

†
j . Yang pointed out that the following quantum state is

an eigenstate of the Hubbard model [20]:

|�〉 = (η†)N |vac〉. (1)

This quantum state is not only an eigenstate of the Hubbard model, but also an eigenstate of
other models which are exactly solvable by the Bethe ansatz method in one dimension [22,
23]. In particular, it is the ground state for the model in [22] for a special case. We should
also point out that the quantum state (1) actually is not tied to any specific model, and it can
be in any dimensions and with any lattice configurations. The ODLRO of this quantum state
is shown as [20, 22],

C1 = 〈�|η†
kηl|�〉

〈�|�〉 = N(L − N)

L(L − 1)
, k �= l. (2)
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Figure 1. The outside curve is S1, the inside curve is C1 normalized by factor 4. For the η-pair
half filled case n = 1/2, S1 and C1 achieve the maximal point.

We can find the off-diagonal element is constant for large distances |k − l|. In the
thermodynamic limit, N,L → ∞ where N/L = n, the off-diagonal correlation is n(1 − n)

which generally does not vanish except for n = 0, 1. For the η-pairing half-filled case n = 1/2,
this correlation achieves the maximum.

3. Entanglement of the η-pairing state

It is of interest to study the entanglement of the η-pairing state. Zanardi etal [26] were the first
to study the pair-wise entanglement of this quantum state (1). In the thermodynamic limit, it
was shown that the pair-wise entanglement vanishes. This coincides with the entanglement
sharing case [27]. Besides pair-wise entanglement, other entanglement properties of this
quantum state in the thermodynamic limit should also be studied, as already done for various
spin chains. We will consider the entanglement between M sites and the rest of the sites. For
this case, the entanglement can be perfectly quantified by the von Neumann entropy of the
reduced density operators of M sites since the quantum state (1) is a pure state. Some related
works include [32, 34].

First, let us consider the entanglement between one site with the remaining L − 1 sites
of the quantum state (1), S1 = −Trρ1 log2 ρ1, S1 is the von Neumann entropy of the one-site
reduced density operator of the quantum state (1). One finds that the one-site reduced density
operator takes the form ρ1 = (

1 − N
L

)|0〉〈0| + N
L
|1〉〈1|, where |0〉 is the hole state, |1〉 is the

η-pair filled state. As previously, we denote n = N/L. The one-site entanglement is

S1 = −(1 − n) log2(1 − n) − n log2 n. (3)

So, in the thermodynamic limit, the entanglement between one site and other sites does not
vanish. Interestingly, for the η-pair half filled case n = 1/2, the entanglement S1 achieves the
maximum. This is the same as the correlation function of ODLRO. We may also identify that
the correlation of ODLRO in equation (2) has the hole-η-pair symmetry, i.e., changing N to
L − N , this correlation is invariant. This symmetry also appears in the one-site entanglement
as shown in equation (3). In the thermodynamic limit, we can find that the correlation function
of the ODLRO and the one-site entanglement have the same monotonicity with respect to the
density of the η-pair n; this is shown in figure 1.

This result draws our attention to the question of whether it is possible to quantify the
entanglement by the correlation function of ODLRO. This means that correlation function of
ODLRO can be identified as the entanglement measure of the quantum state (1). We know
that the widely accepted measure of entanglement of a pure state is the von Neumann entropy
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Figure 2. The functions of entanglement entropy SM , taking M = 1, 2, . . . , 10.

of the reduced density operator. However, indeed, we may quantify the entanglement by other
measures, for example, the concurrence defined by Wootters is also a widely accepted measure
of entanglement [28]. In the thermodynamic limit, the concurrence of one-site entanglement
corresponding to S1 in (3) is n(1−n) which is exactly the correlation of the ODLRO (2). Thus
the correlation of ODLRO C1 is actually the concurrence of the quantum state (1) between
one site and L − 1 sites. So, we may say the appearance of one-site entanglement S1 is the
hidden reason that the off-diagonal elements have long-range correlation in the state (1). If
the correlation function of ODLRO is zero, (1) is a separable state; if it is not zero, (1) is an
entangled state.

We know that the pair-wise entanglement of quantum state (1) vanishes in the
thermodynamic limit [26]. So, the ODLRO does not necessarily correspond to the pair-wise
entanglement. However, we find that the correlation function of ODLRO is the concurrence of
the one-site entanglement of the quantum state (1). The correlation function of ODLRO shown
in equation (2) is in terms of the pair-wise form, i.e., the correlation function is concerned
with two different sites, while the one-site entanglement is in the form: one site with the other
L − 1 sites. Here we argue that though the ODLRO is in terms of the pair-wise form, since
this correlation is the same for all pairs, it can also be roughly understood as the correlation of
one site with the other L − 1 sites.

For multipartite state, we may not only consider the one-site entanglement. The M-site
entanglement is also the basic property of the entanglement. Next, we consider the
entanglement of M sites with the rest L − M sites of the state (1) denoted as SM =
−TrρM log2 ρM , where ρM is the reduced density operator of M sites of the quantum state (1).
For convenience, we consider the thermodynamic limit, and assume M is finite. By some
calculations, we find that the reduced density operator of M sites can be represented as
ρM = ∑M

i=0 |ī〉〈ī|fM(n, i), where we define fM(n, i) = ni(1 − n)M−i M!
i!(M−i)! , the quantum

state |ī〉 is a symmetric state with i η-pairs filled in M sites. So, we know the von Neumann
entropy of ρM takes the form

SM = −
M∑
i=0

fM(n, i) log2 fM(n, i). (4)

Here we remark that the M-site entanglement still has the hole-η-pair symmetry since mapping
|ī〉 to | ¯L − i〉 does not change the von Neumann entropy of ρM . As an example, we recover
equation (3) for M = 1. The behaviour of SM is almost the same for all M. SM achieves the
maximum when n = 1/2 corresponding to η-pair half filled case. See figures 2 and 3 for the
details.



Entanglement and off-diagonal long-range order of an η-pairing state 5289

0.2 0.4 0.6 0.8 1
n

1

2

3

4

S

Figure 3. The functions of entanglement entropy SM , and we take M = 10, 20, . . . , 100.

We may note that the quantum state (1) is just a symmetric spin state. So, the entanglement
of this quantum state is similar to the symmetric bosonic state in a lattice. The entanglement
of a set of spatial bosonic modes localized on a graph has been studied in [29]. In this paper,
we are mainly concerned with the relationship between the entanglement of quantum state (1)
with the correlation function of the ODLRO.

4. The general ODLRO for the η-pairing state

Our results showed that the ODLRO in condensed matter physics may be related with the
entanglement. However, we not only intend to just give an interpretation of ODLRO by the
concurrence; we would also like to know whether quantum information theory can tell us
more about the phenomenon of ODLRO. To study the entanglement property of a multipartite
system, it is natural to consider not only the one-site entanglement S1, but also the M-site
entanglement SM . Conversely, we may wonder whether there exist other types of ODLRO in
η-pairing state. For example, we are interested to know whether the off-diagonal elements
of 〈�|(η†

k1
η
†
k2

)(
ηl1ηl2

)|�〉/〈�|�〉 still have long-range correlation. This is a natural question
if we relate ODLRO with entanglement. Of course, the pair-wise correlation as presented
in equation (2) is enough to show that the quantum state (1) possesses ODLRO. However,
other types of ODLRO may also be interesting properties of the quantum system. Since the
entanglement SM does not vanish in the thermodynamic limit, we expect that the general
ODLRO also exist for η-pairing state. Next, we consider the general off-diagonal elements
of 〈�|(η†

k1
, . . . , η

†
kM

)(
ηl1 , . . . , ηlM

)|�〉 normalized by 〈�|�〉. Here, for convenience, we still
assume M is finite and L,N are large enough to take the thermodynamic limit. We also
assume that all li and kj are different.

It can be checked that we have the relation 〈�|�〉 = N !L(L − 1) . . . (L − N + 1). By
some calculations, we can also find that

〈�|(η†
k1

, . . . , η
†
kM

)(
ηl1 , . . . , ηlM

)|�〉 = N2〈�̃|(η†
k2

, . . . , η
†
kM

)(
ηl2 , . . . , ηlM

)|�̃〉,

where state |�̃〉 = ( ∑
j �=l1,k1

η
†
j

)N−1|vac〉. With these results, we can readily show that

CM = 〈�|(η†
k1

, . . . , η
†
kM

)(
ηl1 , . . . , ηlM

)|�〉
〈�|�〉

= N . . . (N − M + 1)(L − N) . . . (L − N − M + 1)

L . . . (L − 2M + 1)
.
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Figure 4. The dependence of k(n) on n, the values of k(n) are optimized for M = 800 to satisfy the
scaling relation (5). Since SM has η-pair-hole symmetry, i.e., SM is invariant for map n → 1 − n,
we just need to let n range from 0 to 0.5.

The correlation function CM does not depend on the distances of |ki − lj |, i, j = 1, . . . , M .
In fact, we can find other types of ODLRO for the state (1). We can still observe the hole-
η-pair symmetry since the correlation function is invariant if we change N to L − N . In
the thermodynamic limit, this correlation becomes [n(1 − n)]M which is the M power of the
original pair-wise ODLRO. In this sense, these ODLROs are also related with the concurrence
of the one-site entanglement.

The concurrence of entanglement is well defined for 2-level quantum systems [28].
However, there is no consensus definition of concurrence for higher-level quantum systems
even for pure states. Nevertheless, we remark that the concurrence hierarchy which includes
several quantities is a much more general definition for the concurrence [30]. Considering the
M-site reduced density operator ρM , we would like to point out that the quantity

∏M
i=0 fM(n, i)

which is equal to [n(1 − n)]M(M+1)/2 up to a constant factor is one generalized concurrence.
Recall that the general correlation function of ODLRO is [n(1 − n)]M , this provides more
evidence that ODLRO is closely related with the entanglement for the η-pairing state (1).

The entanglement of SM concerns about the correlation of M sites with the rest
L − M sites. Comparatively, it is meaningless to consider the correlation of the form
〈�|( ∏M

i=1 η
†
ki

)( ∏M ′
j=1 ηlj

)|�〉,M �= M ′ which is actually zero. So, the definitions of ODLRO
and quantum entanglement cannot be completely identified. However, as we already showed,
they are closely related. If ODLRO cannot be identified with entanglement in some
other systems different from the η-pairing state, it is possible that ODLRO and quantum
entanglement describe different aspects of the quantum systems.

5. Scaling behaviour for the entropy, and summary

It is shown that the entropy of entanglement of the ground states of gapless models demonstrates
universal scaling behaviour which is related with the universal properties of the quantum phase
transition [10–13]. We next show numerically that SM also obeys universal scaling laws. Since
the η-pairing state is simple, it is straightforward to check numerically the scaling of SM up
to, say, M = 104 sites in a desktop computer. We obtain the scaling form of SM as

SM ≈ 1
2 log2(M) + k(n), (5)

where k(n) depends only on the η-pair density n. The correspondence between k(n) and n is
presented in figure 4; the exact data are also available. The factor 1/2 in (5) could be related
with the central charge of the conformal field theory [31] as for XY model and other models
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[12, 13]. For cases n = 0 and n = 1, we have SM = 0, thus the scaling relation (5) does not
hold. We checked numerically that near n = 0, say, around n = 0.001, the scaling relation
(5) is still correct with high precision. Even near n = 10−4, the scaling relation is roughly
correct. We remark that with n �= 0, 1, the quantum state (1) is entangled with ODLRO and is
thus in the superconducting phase. There will be a phase transition near n = 0, 1. Our results
show that the scaling relation (5) for η-pairing state is generally correct except for n = 0, 1.
Finally, we remark that our result of SM in (4) is rigorous and exact.

We summarize that quantum entanglement plays an important role in the ODLRO of
the quantum state (1) which is not tied to any specific model. Thus entanglement could
also be regarded as one characteristic of superconductivity at least for the η-pairing quantum
state. Though further research about the relationship between entanglement and ODLRO is
necessary, we have already shown that for the well-known η-pairing state, the ODLRO and the
entanglement (C1 and S1), two important concepts in condensed matter physics and quantum
information processing, can be identified. Further, from quantum information theory, we
expected from the fact that SM in general does not vanish that other types of ODLROs exist
in the thermodynamic limit. As presented in this paper the non-zero quantities CM do exist in
the thermodynamic limit.
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